Codevs 1291 train line

xZiLing 2021-08-05 10:56:24 阅读数:672

本文一共[544]字,预计阅读时长:1分钟~
codevs train line
Title Description  Description

A train runs on C Between two cities ( The departure city number is 1, The number of the city reached at the end is C), Suppose the train has S A seat , Now there is R Booking business . Now I want to know about this R This transaction is processed , See which reservations can meet , What can't be satisfied .

A reservation is made by O、D、N Three integers , From the starting station O To the target station D Need to book N A seat . A reservation can be satisfied means that there are empty seats within the travel range of the business , Otherwise, you can't meet . A business cannot be split , That is, the starting point and terminal cannot be changed , The number of reserved seats cannot be changed . All scheduled requirements are processed in the order given .

Please write a program , Look at those reservations that can meet , Those who can't meet .

Input description  Input Description

        Input file The first line in the three integers CSR,(1<=c<=60 000, 1<=s<=60 000, 1<=r<=60 000) They are separated by a space . Next R Each line has three integers O、D、N,(1<=o<d<=c, 1<=n<=s), Represents each scheduled business separately .

Output description  Output Description

        Right. I This business , If it can satisfy , In the output file in Of the I Line output “T”, Otherwise output “N”

The sample input  Sample Input
4 6 4
  • 1.
1 4 2
  • 1.
1 3 2
  • 1.
2 4 3
  • 1.

1 2 3

Sample output  Sample Output
T
  • 1.
T
  • 1.
N
  • 1.

 N

This is a water problem with pits

The segment tree maintains the minimum value of the interval ,

You can't check and subtract , It is possible that the front meets the requirements , Less , The back doesn't meet the requirements

So if you judge to be satisfied , reduce , Otherwise, it will not be reduced

pit ::: Order from l To r, The actual operation interval should be [l,r-1], Because I got off at the target station , Don't occupy a seat

#include<cstdio>
#include<algorithm>
#define N 60001
using namespace std;
int n,m,opl,opr,w,q;
bool ok;
class tree
{
private:
struct node
{
int l,r,minn,f;
}tr[N*4];
public:
void build(int k,int l,int r)
{
tr[k].l=l;tr[k].r=r;
if(l==r)
{
tr[k].minn=m;
return;
}
int mid=l+r>>1;
build(k<<1,l,mid);
build(k<<1|1,mid+1,r);
tr[k].minn=min(tr[k<<1].minn,tr[k<<1|1].minn);
}
void down(int k)
{
tr[k<<1].minn-=tr[k].f;
tr[k<<1|1].minn-=tr[k].f;
tr[k<<1].f+=tr[k].f;
tr[k<<1|1].f+=tr[k].f;
tr[k].f=0;
}
void solve(int k,int g)
{
if(tr[k].l>=opl&&tr[k].r<=opr)
{
if(g==1) { if(tr[k].minn<w) ok=true; }
else
{
tr[k].minn-=w;
tr[k].f+=w;
}
return;
}
if(tr[k].f) down(k);
int mid=tr[k].l+tr[k].r>>1;
if(opl<=mid) solve(k<<1,g);
if(opr>mid) solve(k<<1|1,g);
if(g==2) tr[k].minn=min(tr[k<<1].minn,tr[k<<1|1].minn);
}
}t;
int main()
{
scanf("%d%d%d",&n,&m,&q);
t.build(1,1,n);
for(int i=1;i<=q;i++)
{
ok=false;
scanf("%d%d%d",&opl,&opr,&w);
opr--;
t.solve(1,1);
if(ok) puts("N");
else
{
puts("T");
t.solve(1,2);
}
}
return 0;
}
  • 1.
  • 2.
  • 3.
  • 4.
  • 5.
  • 6.
  • 7.
  • 8.
  • 9.
  • 10.
  • 11.
  • 12.
  • 13.
  • 14.
  • 15.
  • 16.
  • 17.
  • 18.
  • 19.
  • 20.
  • 21.
  • 22.
  • 23.
  • 24.
  • 25.
  • 26.
  • 27.
  • 28.
  • 29.
  • 30.
  • 31.
  • 32.
  • 33.
  • 34.
  • 35.
  • 36.
  • 37.
  • 38.
  • 39.
  • 40.
  • 41.
  • 42.
  • 43.
  • 44.
  • 45.
  • 46.
  • 47.
  • 48.
  • 49.
  • 50.
  • 51.
  • 52.
  • 53.
  • 54.
  • 55.
  • 56.
  • 57.
  • 58.
  • 59.
  • 60.
  • 61.
  • 62.
  • 63.
  • 64.
  • 65.
  • 66.
  • 67.
  • 68.
  • 69.
  • 70.
  • 71.
  • 72.
  • 73.

 

author : xxy
The copyright of this article belongs to the author and blog Park , Please use the link to reprint , Please do not reprint ,Thanks*(・ω・)ノ.
版权声明:本文为[xZiLing]所创,转载请带上原文链接,感谢。 https://car.inotgo.com/2021/08/20210805105356155V.html