【车间调度】基于matlab改进蛙跳算法求解车间调度问题【含Matlab源码 073期】

Matlab科研 2021-08-10 09:13:19 阅读数:686

本文一共[544]字,预计阅读时长:1分钟~
MATLAB 搜索 初始化 优化算法 调度问题

一、简介

作业车间调度问题描述
作业车间调度问题(Job Shop Scheduling, JSP)是最经典的几个NP-hard问题之一。其应用领域极其广泛,涉及航母调度,机场飞机调度,港口码头货船调度,汽车加工流水线等。

JSP问题描述:一个加工系统有M台机器,要求加工N个作业,其中,作业i包含工序数为Li。令,则L为任务集的总工序数。其中,各工序的加工时间已确定,并且每个作业必须按照工序的先后顺序加工。调度的任务是安排所有作业的加工调度排序,约束条件被满足的同时,使性能指标得到优化。

作业车间调度需要考虑如下约束:

Cons1:每道工序在指定的机器上加工,且必须在其前一道工序加工完成后才能开始加工;

Cons2:某一时刻1台机器只能加工1个作业;

Cons3:每个作业只能在1台机器上加工1次;

Cons4:各作业的工序顺序和加工时间已知,不随加工排序的改变而改变。

问题实例
下面给出作业车间调度问题的一个实例,其中每个工序上标注有一对数值(m,p),其中,m表示当前工序必须在第m台机器上进行加工,p表示第m台机器加工当前工序所需要的加工时间。(注:机器和作业的编号从0开始)
jop0=[(0,3),(1,2),(2,2)]
jop1=[(0,2),(2,1),(1,4)]
jop2=[(1,4),(2,3)]
在这个例子中,作业jop0有3道工序:它的第1道工序上标注有(0,3),其表示第1道工序必须在第0台机器上进行加工,且需要3个单位的加工时间;它的第2道工序上标注有(1,2),其表示第2道工序必须在第1台机器上进行加工,且需要2个单位的加工时间;余下的同理。总的来说,这个实例中共有8道工序。
该问题的一个可行解是L=8道工序开始时间的一个排列,且满足问题的约束。下图给出了一个可行解(注:该解不是最优解)的示例:
在这里插入图片描述
蛙跳算法(SFLA)是一种全新的后启发式群体进化算法,具有高效的计算性能和优良的全局搜索能力。对混合蛙跳算法的基本原理进行了阐述,针对算法局部更新策略引起的更新操作前后个体空间位置变化较大,降低收敛速度这一问题,提出了一种基于阈值选择策略的改进蛙跳算法。通过不满足阈值条件的个体分量不予更新的策略,减小了个体空间差异,从而改善了算法的性能。数值实验证明了该改进算法的有效性,并对改进算法的阈值参数进行了率定

特点
SFLA由Eusuff和Lansey为解决组合优化问题于2003年最先提出。作为一种新型的仿生物学智能优化算法,SFLA 结合了基于模因(meme)进化的模因演算法(MA,memeticalgorithm)和基于群体行为的粒子群算法(PSO,particle swarm optimization)2 种群智能优化算法的优点。该算法具有概念简单,调整的参数少,计算速度快,全局搜索寻优能力强,易于实现的特点。混合蛙跳算法主要应用于解决多目标优化问题,例如水资源分配、桥墩维修、车间作业流程安排等工程实际应用问题。

原理
蛙跳算法的思想是:在一片湿地中生活着一群青蛙。湿地内离散的分布着许多石头,青蛙通过寻找不同的石头进行跳跃去找到食物较多的地方。每只青蛙个体之间通过文化的交流实现信息的交换。每只青蛙都具有自己的文化。每只青蛙的文化被定义为问题的一个解。湿地的整个青蛙群体被分为不同的子群体,每个子群体有着自己的文化,执行局部搜索策略。在子群体中的每个个体有着自己的文化,并且影响着其他个体,也受其他个体的影响,并随着子群体的进化而进化。当子群体进化到一定阶段以后,各个子群体之间再进行思想的交流(全局信息交换)实现子群体间的混合运算,一直到所设置的条件满足为止。

数学模型
算法参数 与其他优化算法一样,SFLA亦具有一些必要的计算参数,包括F:蛙群的数量;m:族群的数量;n:族群中青蛙的数量;Smax:最大允许跳动步长;Px:全局最好解;Pb:局部最好解;Pw:局部最差解;q:子族群中蛙的数量;LS:局部元进化次数以及SF:全局思想交流次数等。 更新策略 对于青蛙群体,具有全局最好适应度的解表示为 U g;对于每一个子族群,具有最好适应度的解表示为 UB,最差适应度的解表示为 UW。首先对每个子族群进行局部搜索,即对子族群中最差适应度的青蛙个体进行更新操作,更新策略为 青蛙更新距离 Ds=rand()*(Pb-Pw) (1) 更新后的青蛙 newDw=oldPw+Ds(-Dmax≦Ds≦Dmax) (2) 其中, Ds 表示青蛙个体的调整矢量, Dmax表示青蛙个体允许改变的最大步长。如设 Uw=[1 3 5 4 2], UB=[2 1 5 3 4],允许改变的最大步长 Dmax =3,若rand=0.5 ,则 U q(1) =1+min{int[0.5 × (2−1)],3}=1; U q(2) =3+max{int[0.5×(1−3)], −3}=2;依此相同的操作完成更新策略后可得到一个新解 U q=[1 2 5 4 3].

过程
全局搜索过程 步骤l 初始化。确定蛙群的数量、种群以及每个种群的青蛙数。 步骤2 随机产生初始蛙群,计算各个蛙的适应值。 步骤3 按适应值大小进行降序排序并记录最好解Px,并且将蛙群分成族群。把F个蛙分配到m个族群Y,Y,Y…,Y中去,每个族群包含n个蛙,从而使得Yk=[X(j),f(j)|X(j)=X(k+m*(j-1), f(j)=f(k+m*(j-1),j=1,…,n,k=1,…,m].这里X(j)表示蛙群中的第j蛙,f(j)表示第j个蛙的目标函数值。 步骤4根据SFLA算法公式,在每个族群中进行元进化。 步骤5将各个族群进行混合。在每个族群都进行过一轮元进化之后,将各个族群中的蛙重新进行排序和族群划分并记录全局最好解Px。 步骤6检验计算停止条件。如果满足了算法收敛条件,则停止算法执行过程,否则转到步骤3。通常而言,如果算法在连续几个全局思想交流以后,最好解没有得到明显改进则停止算法。某些情况下,最大函数评价次数也可以作为算法的停止准则。 局部搜索过程 局部搜索过程是对上述步骤4的进一步展开,具体过程 如下: 步骤4—1设im=O,这里im是族群的计数器。用来与族群总数m进行比较。设iN=0,这里iN是局部进化的计数器,用来与Ls进行比较。 步骤4-2根据式(1)在第l,,1个族群中选择q个蛙进入子族群,确定Pb和Pw并设im=im+1。 步骤4-3设iN=iN+1。 步骤4—4根据式(2)和式(3)改进子族群中的最差蛙的位置。 步骤4—5如果步骤4—4改进了最差蛙的位置(解),就用新产生的位置取代最差蛙的位置。否则就采用Px代替式(2)中的PB,重新更新最差蛙的位置。 步骤4—6如果步骤4-5没有改进最差蛙的位置,则随机产生一个处于湿地中任何位置的蛙来替代最差的蛙。 步骤4—7如果iN<LS,则转到步骤4-3。 步骤4—8如果im<m,则转到步骤4-2,否则转到全局搜索过程的步骤5。 算法停止条件 SFLA通常采用两种策略来控制算法的执行时间: 1)在最近的K次全局思想交流过程之后,全局最好解没有得到明显的改进; 2)算法预先定义的函数评价次数已经达到。 3)已有标准测试结果。 无论哪个停止条件得到满足,算法都要被强制退出整个循环搜索过程。

二、源代码


clc
clear all
close all
%--------------------------------------------------------------------------
% 问题: N个工件,M台机器的确定型流水车间调度问题
% 工件数N=20,机器数M=10,有限次数的最优解 fval=14.9263,
% x = [16 4 18 15 12 11 2 1 6 7 3 5 20 ...
% 10 8 14 13 19 17 9]
N = 20 % 工件数(解矢量长度)
M = 10 % 机器数
rand('state',N+M); % 固定时间矩阵
T = rand(M,N); % 产生时间矩阵,行数M1为机器数,列数N为工件数
rand('state',sum(100*clock)); % 种子恢复随机
%--------------------------------------------------------------------------
% 必需参数
popsize = 50; % 种群规模
maxgen = 50; % 最大进化代数
method = 4 % 方法选择,1 - 伪并行小生境自适应遗传算法(PPNSA)
% 2 - 混合蛙跳算法+变异算子(SFLA+MO)
% 3 - 批处理蛙跳算法(BFLA),为SFLA的改进算法
% 4 - PPNSA+扰动算子(末选算法,收敛速度中,较易跳出局部极小)
% 5 - SFLA+MO+扰动算子(次选算法,收敛速度快,最易陷入局部极小)
% 6 - BFLA+扰动算子(首选算法,收敛速度中,可能陷入局部极小)
type = 1; % 初始化方式,1 - 随机初始化(缺省设置)
% 2 - 启发式初始化
%--------------------------------------------------------------------------
% 函数调用
[X,fval,F] = SFLA(T,popsize,maxgen,method,type);
% 混合蛙跳算法(Shuffled Frog-Leaping Alogrihtm,SFLA)
% 输入参数:
% T - 时间矩阵
% popsize - 种群规模
% maxgen - 最大进化代数
% method - 方法选择,1 - 伪并行小生境自适应遗传算法(PPNSA)
% 2 - 混合蛙跳算法+变异算子(SFLA+MO)
% 3 - 批处理蛙跳算法(BFLA),为SFLA的改进算法
% 4 - PPNSA+扰动算子(末选算法,收敛速度中,较易跳出局部极小)
% 5 - SFLA+MO+扰动算子(次选算法,收敛速度快,最易陷入局部极小)
% 6 - BFLA+扰动算子(首选算法,收敛速度中,可能陷入局部极小)
% type - 初始化方式,1 - 随机初始化(缺省设置)
% 2 - 启发式初始化
% 输出参数:
% X - 最优适应度对应的解
% fval - 最优适应度值
% F - 最优,平均,最差适应度
%--------------------------------------------------------------------------
% 结果作图
figure(1)
FigSche(X,T);
figure(2);
plot(1:maxgen,F,'.-'); grid on;
legend('最优','平均','最差',3);
xlabel('进化代数'); ylabel('适应度');
set(gcf,'position',[700 200 500 400])
set(gca,'XLim',[1 maxgen]);
title(['工件数:',num2str(N),' 机器数:',num2str(M),', 最优值:',num2str(fval)]);

  • 1.
  • 2.
  • 3.
  • 4.
  • 5.
  • 6.
  • 7.
  • 8.
  • 9.
  • 10.
  • 11.
  • 12.
  • 13.
  • 14.
  • 15.
  • 16.
  • 17.
  • 18.
  • 19.
  • 20.
  • 21.
  • 22.
  • 23.
  • 24.
  • 25.
  • 26.
  • 27.
  • 28.
  • 29.
  • 30.
  • 31.
  • 32.
  • 33.
  • 34.
  • 35.
  • 36.
  • 37.
  • 38.
  • 39.
  • 40.
  • 41.
  • 42.
  • 43.
  • 44.
  • 45.
  • 46.
  • 47.
  • 48.
  • 49.
  • 50.
  • 51.
  • 52.
  • 53.
  • 54.
  • 55.
  • 56.
  • 57.
  • 58.
  • 59.
  • 60.
  • 61.
  • 62.
  • 63.
  • 64.
  • 65.
  • 66.
  • 67.
  • 68.
  • 69.

三、运行结果

在这里插入图片描述
在这里插入图片描述

四、备注

版本:2014a

版权声明:本文为[Matlab科研]所创,转载请带上原文链接,感谢。 https://blog.51cto.com/u_15324424/3328552